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Chromatic Aberration

The presence of material dispersion
causes the refractive index to vary
with wavelength. This means that
strictly speaking the results of the
paraxial approximation are only true
for the central design wavelength,
since the expression for thin lens
power (Theory Pg 2) contains the
refractive index.

The first two chromatic errors to
appear are a variation with
wavelength of the paraxial image
plane position and image height.
These are known respectively as
longitudinal and lateral chromatic
aberration. The accompanying figures
show the behavior of a typical lens.

A useful parameter in assessing the
magnitude of chromatic aberration is
the Abbe number (V−value).  This is
defined in terms of the refractive
indices n

1
,n

2
, and n

3
at three

wavelengths λ
1
,λ

2
and λ

3
(the design

wavelength and the long and short
wavelength limits of the spectral
band respectively) by 

The fractional change in focal length
over the spectral range of interest is
given by 1/V. So for BK7 lenses used
between the wavelengths 486.1nm
and 656.6nm where the value is
V

d
=64.17, the change in focal length

is approximately 1.6 per cent.

If the chief ray passes centrally
through the lens ( i.e. the lens is at
the stop) then it is undeflected and
the contribution to lateral chromatic
aberration is zero. It is worth pointing
out that lateral chromatic aberration
is a shift in image height with the
image plane fixed at the position
given for the design wavelength. 

Changes of lens shape have no
influence on the chromatic aberration
to a first order approximation, and at
least two components of different
materials are required for its
correction. There are exceptions such
as the two lens Dialyte design and
binary lenses which combine
refracting and diffracting power, but
these are beyond the level of
discussion here.
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Seidel Aberrations

The most important aberrations in
the majority of  applications are the
Seidel (also known as Primary or
Third order) aberrations. These are
the first aberrations to have an
impact on the image quality as the
aperture and field angles are
increased beyond the point at which
the paraxial approximation ceases to
remain accurate. There are five Seidel
monochromatic aberrations. In
addition there are two Primary
chromatic aberrations.  These are the
most significant in the majority of
applications.

Primary Spherical Aberration

A smaller spot size can be obtained
by selecting an appropriate focal
plane. In the geometrical optics
approximation (i.e. ignoring
diffraction effects) and in the absence
of higher order aberrations, the
optimum plane lies 3/4 of the way
from the paraxial focus to the
marginal focus.  This results in a spot
size which is 1/4 of the size which
would be obtained at the paraxial
focus position.

If the system is diffraction limited
then the wavefront is a more reliable
indicator of image quality. The
wavefront error associated with
primary spherical aberration is
dependent on the 4th power of the
aperture. The optimum focal plane in
this situation would be midway
between the paraxial and marginal
focal positions.  This location
maximizes the intensity at the center
of the diffraction spot.

A reduction in the amount of
spherical aberration can be achieved
in several ways. The simplest method
is to reduce the aperture, and here
the improvement can be quite
dramatic. For example, a reduction of
20% in lens aperture halves the
geometrical blur size and reduces the
wavefront error to 40% of its initial
value.

Another technique of reducing the
spherical aberration is to change the
shape of the lens, a technique known
as “bending”. The spherical
aberration of a lens is usually reduced
if the deflections of the ray which
occur at the two surfaces are made
more nearly equal. Depending on the
conjugates, i.e. the magnification,
there is an optimum shape and
orientation for the lens.
By extending this technique to the
use of more than one lens in a
system, it can be seen that sharing
the power between the surfaces of
several lenses results in a reduction of
the magnitude of the spherical
aberration.

With glass of refractive index close to
1.5 the best positive lens form for use
with infinite conjugates is a bi−
convex lens with a 6:1 ratio in its radii

of curvature, with the steepest side
positioned towards the infinite
conjugate. However the performance
gain over a plano−convex lens is
minimal and for reasons of cost the
plano−convex form is nearly always
used for this application.

For 1:1 imaging, the equi−convex lens
is the favourable shape as it produces
an almost equal angular deflection of
the ray path per surface.

The final technique for the reduction
in spherical aberration involves
introducing lenses of opposite power,
which have controlled amounts of
spherical aberration of opposing
signs. An example of such a case is
the cemented achromatic doublets
covered in a later section.

In complex lens systems, one or more
of these techniques may be applied
to correct the overall lens assembly.
In addition surfaces with non−
spherical form, or materials with
controlled departures of the
refractive index from the
homogeneous case, may be utilized.

Primary Coma
The figure shows the situation for an
infinitely distant object conjugate. As
the incident ray height at the lens is
increased, the angle of incidence also
increases. The deflection of the ray at
that boundary increases more rapidly
than the amount predicted by the
paraxial approximation.

The net effect is for a lens with
spherical surfaces to exhibit  excess
power for rays farther from the
optical axis, bringing these rays to a
focus closer to the lens. The
difference between the paraxial and
marginal focus positions is called the
longitudinal spherical aberration.

A more convenient measure of the
magnitude of the aberration in most
cases is to examine the distance from
the axis at which rays pierce a
particular focal plane. This image
criterion is the transverse spherical
aberration.  In the Seidel
approximation, the ray error is
proportional to the 3rd power of the
initial ray height. 

Marginal
Focus

Paraxial
Focus

Chief Ray

Paraxial
Focus

Coma is the first of the lens
aberrations to appear as the
conjugate points are moved away
from the optical axis. 
In the figure, a parallel input beam is
shown approaching a plano−convex
lens at an oblique angle. The ray at
the upper edge of the lens has a
higher angle of incidence with the
curved surface than the ray at the
lower edge. By analogy with the case
of spherical aberration described
previously, the deflection of the
upper ray will be greater, and it will
intersect the chief ray closer to the
lens than the ray from the lower
edge.
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gain is not so dramatic. The optimum
shape of the lens to reduce coma is
such as to produce a pseudo−
symmetry to the incident beam and is
quite close to that which minimizes
spherical aberration.

An additional method of reducing
coma is to move the stop, so that the
off−axis beam translates laterally
across the lens and takes up a
position where the deflections at the
top and bottom are approximately
equal. Equations given in a later
section will indicate that the
reduction of the coma is only possible
where there is residual spherical
aberration in the system.

It is worth commenting that complex
lens arrangements, which exhibit a
degree of symmetry about the stop,
are usually substantially free from
coma.

the object point and is perpendicular
to the tangential plane.  For the
simple case shown in the figure, the
rays in the tangential plane focus
closer to the lens than those in the
sagittal plane, the discrepancy in the
focus position being known as
astigmatism.

In the absence of other types of
aberration, the sagittal and tangential
foci are line foci, while at other
planes the shape of the beam is of an
elliptical cross−section. Midway
between the two line foci lies the
medial surface, where the spot shape
is circular. This surface is the
optimum choice for many
applications.
The shift in focus position is
proportional to the square of the
image height for primary
astigmatism, the positions of the S
and T foci mapping out two
paraboloidal surfaces as the field
position is varied.
Astigmatism can be reduced by
varying the stop position, provided
that spherical aberration or coma is
non−zero. For a lens corrected for all
three image defects a multi−
component system is almost always
required, the shape of the
components being in most cases
critical and different from those of
standard catalog lenses.

Field curvature also results in the foci
of off−axis points falling on a
paraboloidal surface known as the
Petzval surface. It is not possible to
remove this aberration by choosing a
different stop position or by changing
the bending of a single lens. In some
cases a compromise may be found if
astigmatism of opposing sign is
introduced.
Adjusting the detector position by
scanning or by curving a photo−
sensitive material can be used in
some cases, as field curvature by itself
does not degrade the imagery at any
individual field point.

In general the field curvature can only
be reduced by using several lenses of
opposing powers.  This is usually only
beneficial if a complex lens is used
which is also well corrected for
astigmatism.

Astigmatism and Field Curvature
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Rays in Lens Pupil

Rays at Image Plane

As shown in the figure above, rays
passing through any  circular zone of
the lens pass through the paraxial
image plane in a circular pattern. The
center of this pattern experiences an
increasing lateral shift away from the
point of intersection of the principal
ray with the paraxial image plane. In
addition the radius of each circle
increases as the selected zone at the
lens is increased in diameter. Input
rays at diametrically opposite points
in the lens pupil fall onto the same
point in the paraxial image plane.

It is the comet−like appearance of the
image associated with this aberration
that gives rise to the name Coma.
The magnitude of the primary coma
can be reduced by stopping down the
lens or by choosing an appropriate
bending for the lens in a similar way
to the case of spherical aberration.
However, for primary coma , the
transverse aberration and wavefront
error vary as the 2nd and 3rd powers
of the ray height respectively, so the

Object Point

Chie
f R

ay

Tangential
Focus
Line

Sagittal Focus
Line

Astigmatism and Field Curvature are
the aberrations from which a lens
suffers if it is used off−axis at a low
aperture. For single thin lenses the
magnitude of these aberrations is
proportional to the lens power.

Two principal sections occur - the
tangential (or meridional) plane,
which contains the object point and
the optical axis, and the sagittal (or
radial) plane which passes through
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S
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= 0

S
4
=

H2K

n

Computing Approximate Seidel
Aberrations

It is sometimes useful to be able to
get an approximate value for the
magnitude of the aberrations without
using real (finite) raytracing
equations.
When using simple components the
Seidel approximation is often
sufficiently accurate. Here, at least, if
higher order aberrations are present,
they are usually accompanied by
Seidel aberrations of a high
magnitude. For this reason
expressions are given for the
evaluation of the Seidel aberration
coefficients of thin lenses.
Most simple catalog components, can
be considered as thin lenses for the
purpose of evaluating the
aberrations. If they are thick relative
to their focal length, they are likely to
be operating at a fast F/No.  In this
case the higher order aberrations
need to be considered as well.
Even in cases where the Seidel
approximation is not accurate, their
computation can identify situations
where the lens choice is obviously
inadequate for the task and point out
potential problem areas in an
imaging system.

Equations for a thin lens at the
stop
To compute the Seidel coefficients for
a thin lens it is necessary to know the
following parameters
1) a

0
, a

1
, a

2
, b

0
and b

1
which may be

found listed in the text of each lens
type. The values are sufficiently
accurate for work in the region of the
design wavelength.
2) The height of the paraxial ray h,
for the on−axis object point at the
lens in question.
3) The Lagrange Invariant H.
4) The value of the Abbe Number V
and the refractive index n, for the
wavelength region in question, if the
magnitude of the chromatic
aberration is to be assessed.

5) The conjugate parameter C which
is computed from the magnification
m (for that component alone), using 

Equations for a thin lens located
away from the stop - Stop shift
equations
For lenses located away from the
stop, the equations are slightly more
complex.  They require a knowledge
of the height h at the lens  of the
paraxial chief ray from the object
point of interest.  It also passes
through the center of the stop. This is
incorporated in the term E, given by

S
1
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0
+a
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S
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h
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The Seidel coefficients then become:

S
3
= H2K

C =
m+1

m−1

Distortion is produced when the chief
rays intersect the image surface at
heights different from those
predicted by the paraxial
approximation. The cases of
pincushion and barrel distortion are
shown in the figure above.  The
dependence of distortion on stop
position is strong. A thin lens placed
at the stop will exhibit no distortion,
and this is also the case for a lens
arrangement which is symmetrical
about the stop.

In most applications involving simple
catalog components, the degradation
of the image quality due to
astigmatism and field curvature will
have reached unacceptable levels
before distortion becomes a problem.

Primary distortion is proportional to
the 3rd power of the field height. In
certain applications it may be
compensated for by scanning the
image by means of micro−
positioning equipment or by pre−
distortion of the object, such as
might be carried out on a CRT using
appropriate deflection voltages.

Distortion

 Barrel Distortion

Pincushion Distortion

The primed quantities (S
1
' etc.) refer

to the coefficients obtained if the lens
were at the stop.
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Example 7

As an example of the calculation of
the approximate performance of a
lens system using the equations on
the previous Page, we will apply them
to the lens combination used in
Example 5 on Page 7.

For lens 1, 
(from Example 5)

m = u
1
/u

0

= 0, giving a conjugate
parameter

C = − 1.
h = 7.5 
K = 1/75 
H = − 0.75
h = 0 

n = 1.5168 
V= 64.17 
a

0
= 4.3238

a
1
=3.2107

a
2
=1.0796

b
0
=1.6053

b
1
=1.3296

Substituting these values into the
equations on the previous Page, we
obtain

S
1
=0.016441   S

2
=0.002068

S
3
=0.0075       S

4
=0.004945

S
5
=0.0 C

1
=0.0011688

C
2
=0.0

For lens 2 
(from example 5)

m = u
2
/u

1

= 2/3, giving a conjugate 
parameter

C = −5.
h=3.75
K=1/75
H=−0.75
h=3.75

The values of n,V,a
0
, a

1
, a

2
, b

0
and b

1

are the same as for lens 1 as it is
identical in material and form.
As this lens is not located at the stop,
additional shift values must be
applied to the results obtained using
the equations for a lens at the stop.
If the lens were at the stop we would
obtain the following values

S
1
=0.007146   S

2
=−0.009455

S
3
=0.0075 S

4
=0.004945

S
5
=0.0             C

1
=0.002922

C
2
=0.0

For lens 2 the required term in the
stop shift equations E=h/h=1. Using
this value we obtain the final
contributions from lens 2 as 

S
1
=0.007146     S

2
=− 0.002309

S
3
=− 0.004264  S

4
=0.004945

S
5
=0.006226     C

1
=0.002922

C
2
=0.002922

The totals for the system are
therefore

S
1
=0.023587    S

2
=−0.000241

S
3
=0.003236    S

4
=0.00989

S
5
=0.006226    C

1
=0.01461

C
2
=0.002922

For this system these values are very
close for practical purposes to those
obtained from a surface by surface
calculation, which includes the
effects of lens thickness.

Theory

Interpretation of Seidal Coefficients

Computation of the Seidal
coefficients allows us to evaluate
aberrations in a system.  Different
Seidal coefficients indicate the
presence of different aberrations.
A non-zero value will indicate that the
following aberrations are present.

S
1

Spherical Aberration
S

2
Coma

S
3
+S

4
Field Curvature & Astigmatism

S
5

Distortion
C

1
or C

2
Chromatic Aberration

The following brief discussion on the
interpretation of these values should
assist in assessing the aberrations of a
system.

Spherical aberration
The most important aberration for
the majority of systems is Spherical
Aberration as it occurs over the
whole field.  The spot size in the
paraxial focal plane is given by 

S
1
/u

N+1
.

It can be reduced by a factor of 4
with a suitable refocus of 

3S
1
/8u2

N+1
.

The associated wavefront error is 
S

1
/8;

If lS1l is less than 7.6λ the system is
likely to be diffraction limited on−axis
(if no higher orders are present).

Coma
The distance from the chief ray
intersection point to the extreme ray
in the coma pattern (see page 11) is
given by 

3S
2
/2u

N+1
.

If lS2l is less than 1.2λ, then the
system should be diffraction limited
for coma.

Astigmatism & field curvature
Off−axis the situation is complicated
by the interaction between all the
aberrations on the wavefront.  For
diffraction limited performance look
for lS3l and lS4l to be lower than λ.
These figures are not absolute values
but indicate when a lens will be
completely unsuitable.  (See Welford
for a more complete treatment.)
The astigmatic blur in the paraxial
focal plane is an ellipse with
dimensions

(3S
3
+S

4
)/u

N+1
by (S

3
+S

4
)/u

N+1
.

Distortion
The distortion of the edges of the
image as a fraction of the Gaussian
image height is given by 

S
5
/2H.

Chromatic aberration
If focused in the paraxial focal plane
at one end of the spectral range the
blur diameter would be 2C

1
/u

N+1
due

to longituding chromatic aberration.
In simple terms the blur is 1/V times
the lens diameter for an infinite
object distance.
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