Two Lens Combinations - Infinite Conjugates

Given two thin lens components with powers K_{1} and K_{2}, separated by a distance d, the power K of the assembly may be calculated using the following equation
$\mathrm{K}=\mathrm{K}_{1}+\mathrm{K}_{2}-\mathrm{d} \mathrm{K}_{1} \mathrm{~K}_{2}$

The focal length f of the assembly is given by

$$
f=\frac{1}{K}
$$

The back focal distances f_{b} measured from vertex V^{\prime} of lens 2 is given by

$$
f_{b}=f\left(1-d K_{1}\right)
$$

and the front focal distance f_{f} measured from vertex V of lens 1 is given by

$$
f_{f}=f\left(1-d K_{2}\right)
$$

Given the focal length and the front and back focal distances the locations of the principal planes P and P^{\prime} for the assembly can be determined.

If the lenses are thick, the separation d is that between the second principal plane P^{\prime} of lens 1 and the first principal plane P of lens 2. Also the the front and back focal distances are measured from the principal plane P of lens 1 and P^{\prime} of lens 2 respectively.
(The principal planes for the individual lenses are not shown on the figure.)

Two Lens Combinations - Finite Conjugates

A) If an object distance s, image distance s^{\prime}, separation d and magnification m are known, then powers K_{1} and K_{2} of the lenses can be found from the following equations:

$$
\begin{aligned}
& \mathrm{K}_{1}=\left(\mathrm{s}-\mathrm{s}^{\prime} / \mathrm{m}-\mathrm{d}\right) / \mathrm{sd} \\
& \mathrm{~K}_{2}=\left(-\mathrm{ms}+\mathrm{s}^{\prime}+\mathrm{d}\right) / \mathrm{s}^{\prime} \mathrm{d}
\end{aligned}
$$

B) If the focal lengths f_{1} and f_{2}, the magnification m and the total track T are known, then the thin lens separation, object and image distances can be found.

The possible separations of the lenses d are given by the solution of the quadratic equation

$$
d^{2}-T d+\left[T\left(f_{1}+f_{2}\right)+\frac{(m-1)^{2} f_{1} f_{2}}{m}\right]=0
$$

Object distance s is given by

$$
\mathrm{s}=\frac{(1-\mathrm{m}) \mathrm{f}_{1} \mathrm{f}_{2}+(\mathrm{d}-\mathrm{T}) \mathrm{f}_{1}}{\mathrm{f}_{1}+\mathrm{mf}_{2}}
$$

and Image distance s' is given by
$\mathrm{s}^{\prime}=\mathrm{T}-\mathrm{d}+\mathrm{s}$
[Note. As for the equations for the infinite conjugate case, distances are always referred to the appropriate principal point positions]

Example 3

We use two 75 mm focal length Plano-Convex singlets to give a 50 mm combined focal length.

Using the formula for the total power of a two lens combination

$$
\mathrm{K}=\mathrm{K}_{1}+\mathrm{K}_{2}-\mathrm{d} \mathrm{~K}_{1} \mathrm{~K}_{2}
$$

we require $\mathrm{K}=1 / 50 \mathrm{~mm}^{-1}$, and both K_{1} and K_{2} are equal to $1 / 75 \mathrm{~mm}^{-1}$.

Solving for d we find $d=37.5 \mathrm{~mm}$.
As these are thick lenses the separation is between P^{\prime} of lens 1 and P of lens 2. We have $\mathrm{VP}=0$ for lens 2 and $V^{\prime} P^{\prime}=-1.7 \mathrm{~mm}$ for lens 1 . The separation between the lenses is therefore 35.8 mm .

In addition we can calculate the thin lens back focal length
$\mathrm{f}_{\mathrm{b}}=\mathrm{f}\left(1-\mathrm{dK} \mathrm{K}_{\mathrm{t}}\right)$
$=50(1-37.5(1 / 75))$
$=25 \mathrm{~mm}$ (measured from P^{\prime} of lens 2).

This gives a physical back focus for the assembly of 23.3 mm with these real lenses, taking thickness into account.

The thin lens front focal distance
$\mathrm{f}_{\mathrm{f}}=\mathrm{f}\left(1-\mathrm{dK}_{2}\right)$
$=25 \mathrm{~mm}$ (measured from P of lens 1).

As $\mathrm{VP}=0$ for lens 1, the actual front focal distance for the combination would also be 25 mm .

Example 4

To illustrate the use of the two-lens equations for finite conjugates, suppose that a 10X magnification is required with a total track of 500 mm , but with a working clearance of 100 mm and a lens separation of around 50 mm .

So we have

$$
\begin{aligned}
\mathrm{m} & =-10, \\
\mathrm{~T} & =500 \mathrm{~mm}, \\
\mathrm{~s} & =-100 \\
\text { and } \mathrm{d} & =50 \mathrm{~mm} .
\end{aligned}
$$

For a thin lens system

$$
\begin{aligned}
\mathrm{T} & =-s+d+\mathrm{s}^{\prime}, \\
\text { giving } \mathrm{s}^{\prime} & =350 \mathrm{~mm} .
\end{aligned}
$$

The relevant equations give

$$
\begin{aligned}
\mathrm{K}_{1} & =\left(\mathrm{s}-\mathrm{s}^{\prime} / \mathrm{m}-\mathrm{d}\right) / \mathrm{sd} \\
& =\left(-100 \frac{-350}{(-10)}-50\right) /(-100) 50 \\
& =0.0230 \\
\mathrm{f}_{1} & =1 / \mathrm{K}_{1} \\
& =43.48 \mathrm{~mm}
\end{aligned}
$$

and

$K_{2}=\left(-m s+s^{\prime}+d\right) / s^{\prime} d$

$$
=(-(-10)(-100)+350+50) / 350 \times 50
$$

$$
=-0.0343
$$

$$
\mathrm{f}_{2}=1 / \mathrm{K}_{1}
$$

$$
=-29.17 \mathrm{~mm}
$$

Suppose we choose $f_{1}=50 \mathrm{~mm}$ and $\mathrm{f}_{2}=-30 \mathrm{~mm}$ as suitable stock components. Substituting these values into the equation on Theory page 3 results in the quadratic equation

$$
\begin{aligned}
& d^{2}-500 d+28150=0 \\
& (\text { with solutions } d=64.662 \text { or } \\
& -109.32 \mathrm{~mm} \text {) }
\end{aligned}
$$

The auxiliary equation given opposite for s, gives
$s=\frac{(1-(-10)) 50(-30)+(64.662-500) 50}{50+10(-30)}$ $=-109.334 \mathrm{~mm}$, in the first case.

As the first lens is working almost at 1:1 a suitable choice might be an Equi-Convex Lens for which the principal points are separated by

$$
\begin{aligned}
\mathrm{PP}^{\prime} & =\mathrm{VV}^{\prime}-\mathrm{VP}+\mathrm{V}^{\prime} \mathrm{P}^{\prime} \\
& =4.6-(1.5)+(-1.5) \\
& =1.6 \mathrm{~mm} .
\end{aligned}
$$

For the second lens we might choose a Plano-Concave Lens for which

$$
\mathrm{PP}^{\prime}=1.5-0+(-1.0)=0.5 \mathrm{~mm}
$$

The separation of the principal points of these real components adds up to 2.1 mm and this should be subtracted from the total track T when computing d, s and s^{\prime}. For this particular case we find

$$
\begin{aligned}
\mathrm{d} & =64.92 \mathrm{~mm} \text { and } \\
\mathrm{s} & =-109.0 \mathrm{~mm} .
\end{aligned}
$$

Remember that d is the separation between P^{\prime} for lens 1 and P for lens 2, so the actual airgap would be 63.42 mm . Also s and s^{\prime} will be measured from the appropriate principal points P for lens 1 and P^{\prime} for lens 2.

