
269

OUTPUT BEAM

(continued)

CHARACTERISTICS

SELECTING A PRISM - TECHNICAL CONSIDERATIONS

270

1

COMPONENT MOUNTS

MANUAL MICRO POSITIONERS

MOTORIZED MICRO-POSITIONERS

optical Materials, Theory, Cleaning

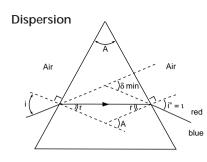
LENSES, MICROSCOPE COMPONENTS

WINDOWS, MIRRORS, BEAMSPLITTERS, COATINGS

PRISMS, POLARIZERS, APERTURES, TARGETS

OPTICAL FILTERS

LASERS & ACCESSORIES


LIGHT SOURCES, MONO-CHROMATORS, DETECTORS

4

MEASURING MEASURING INSTRUMENTS

TEXTBOOKS

Dispersing Prisms are designed to separate a beam into its constituent spectral components. They are usually of triangular cross-section, having two refracting faces intersecting at an angle A at the apex.

Considering a monochromatic beam first, it is refracted at both surfaces and emerges deviated through an angle δ_i given by

 $\delta = i + \sin^{-1} [(\sin A) (n^2 - \sin^2 i)^{f_i} - (\sin i \cos A)] - A$

where n is the refractive index of the prism.

Dispersing Prisms are frequently used in the position of minimum deviation where surface reflection losses are minimized. This is where the incident and emergent angles are equal and the equation above reduces to

 $\delta_{_{min}} = 2 \sin^{\cdot 1} \left[n \sin \left(A/2 \right) \right] - A$

The angle of deviation is therefore dependent on refractive index. Since refractive index is dependent on wavelength, polychromatic beams are split up and deviated by different amounts according to their constituent wavelength components. Shorter wavelengths are 'bent' more i.e. a beam of white light is split into its spectral components with the blue being deviated more than the red. The degree to which the wavelengths are spread or dispersed depends on the properties of the material used. For a high degree of angular separation it is necessary to select a material with a rapid change in refractive index across the wavelengths.

Traditionally, dispersive properties are defined in terms of Abbe numbers, often called V-values. These are related to the refractive index values at three wavelengths corresponding to the main Fraunhofer lines in the solar spectrum. V-value is defined as

$$V_{n_{f}^{d}} = \frac{n_{d} - 1}{n_{c}}$$

where $n_d = refractive index at the Fraunhofer d line 587.6nm$

 $n_{_{\rm F}}$ = refractive index at the Fraunhofer F line 486.1nm

 $n_c =$ refractive index at the Fraunhofer C line 656.3nm

Dispersive power is defined as $1/V_d$ i.e. a low V-value means high dispersive power and hence greater angular separation. The V-values for the materials used in Ealing prisms are listed below.

Material	n _d	n _F -n _c	V _d	1/V _d
BK7	1.517	0.0081		0.016
F2	1.620	0.0170		0.027
SF10	1.728	0.0256		0.035
Fused silica	1.458	0.0068		0.015

Angular dispersion, the angular separation of two different wavelengths, can be calculated at minimum deviation by calculating the difference in deviation for the two wavelengths. Using the equations above, the angular separation ($d\delta$) is given by

$$d\delta = \frac{2 \sin (A/2) dn}{\sqrt{1 - n^2 \sin^2 (A/2)}} \frac{180}{\pi}$$
 degrees

where n is the mean refractive index of the two wavelengths, usually $(n_{F}+n_{C})/2$ dn is the partial dispersion, usually calculated for $n_{F}-n_{C}$

				Prisms	271	
		SELE	CTING A PRISM - TECHN	ICAL CONSIDERATIONS	1	
N De Paç	tailed transmission cha	racteristics	oatings suitable for the wave of the materials used in Ealin hown below. Coating transm	ng prisms are shown on	OPTICAL BENCHES, MOUNTING BASES, TABLES	
		Material BK7 F2 SF10 Fused silica	Usable Wavelength Range (nm) 330-2100 350-2200 400-2400 200 - see curve (Page 167)		COMPONEN MOUNTS MANUAL MICR POSITIONER	
bea inc imp sho app obt	A prism must be selected to have an aperture which is large enough to accommodate the beam size at both the entrance and exit faces. The requirement for internal angles of incidence to be greater than the critical angle (thereby achieving total internal reflection) imposes limitations on the field of view of prisms. For example, for right angle prisms, rays should enter at an angle of less than 5.7° for BK7 and 2.5° for fused silica. For many applications this does not cause a problem. In general, a larger field of view can be obtained by using a higher refractive index glass or a fully reflecting coating, (see coatings below).					
fun acc ang pur	The tolerances to which a prism is manufactured determine the accuracy with which it will function. The angular tolerance is often of prime importance in determining prism accuracy. Ealing takes great care to specify and control the quality of its prisms. The angular and surface tolerances are specified to suit most requirements from general purpose to exacting laser applications. Ealing can also manufacture prisms to special requirements.					
sys The ran abe imp pos inc	Introducing a prism into an optical system changes the path length of a beam through the system. For a prism of refractive index n equivalent path length in air = n x actual path length through the prism The effects of a change in path length need to be considered in applications such as rangefinders, stereoscopic devices, etc. Path length changes can also cause chromatic aberrations, astigmatism and displacement of the beam and focus. It is therefore important to consider these effects by correcting for and/or incorporating them where possible when designing an optical system. This is particularly true when considering incorporating prisms into an imaging system. Our technical team will be happy to advise on any specific problems.					
be any Ful are wh acc ap	Coatings are often applied to prisms for a number of reasons. Anti-reflection coatings can be applied to reduce surface reflection losses, thus improving transmission and reducing any problems from reflected radiation. Fully reflecting coatings can be applied to the reflecting surface of prisms. Although these are less efficient than total internal reflection, they can be very useful in environments where prism surfaces cannot be kept spotlessly clean. They are also used when an acceptance angle is needed which is too large for total internal reflection. For high power applications it should be noted that the damage threshold is generally reduced by the application of a coating.					
slig wh	htly convergent or dive ere a beam is clearly co	ergent, but onvergent o	ble to have a collimated inpu for most applications this is or divergent, aberrations are arefully when designing a sy	not a problem. However, introduced, which can be	5	

272 1

SELECTING A PRISM - OVERVIEW OF THE EALING RANGE

OPTICAL	_										
BENCHES, MOUNTING BASES, TABLES		PRODUCT RANGE	INVERSION	REVERSION	DEVIATION	DISPLACEMENT	REFLECTING/ DISPERSING	MATER- IAL/ USABLE WAVE- LENGTH RANGE	MAX APERTURE (mm)	APPLICATIONS	PAGE NO.
MOUNTS	RIGHT ANGLE			•	90°	-	Reflecting	BK 7	50	Laser beam bending, Light deviation, Image erection in periscopes &	274- 275
MOTORIZED	LHDIA			(90° only)	180°			Fused Silica	50.8	telescopes, Retroreflection, Mirror substitutes	275
MICRO- POSITIONERS 2 OPTICAL MATERIALS, THEORY, CLEANING	ANAMORPHIC			-	-	+Beam Expansion	Reflecting	SF 11	12	Beam shaping of Laser Diodes	275
LENSES, MICROSCOPE COMPONENTS WINDOWS, MIRRORS, BEAMSPLITTERS, COATINGS	WEDGE		-	-	few degrees	-	Reflecting	BK 7	25	Laser beam steering Elimination of 2nd surface reflections	275
PRISMS, POLARIZERS, APERTURES, TARGETS OPTICAL	DENTA		Þ.	-	90°	-	Reflecting	BK 7	30	Range-finding Surveying Alignment Cine photography	276
FILTERS 3 LASERS & ACCESSORIES	DOVE		•	-	-	-	Reflecting	BK 7	30	Image rotation Microfilm viewers Optical profilers	276
LIGHT SOURCES, MONO- CHROMATORS, DETECTORS 4	DIOMBOID		× .	-	-	•	Reflecting	BK 7	25	Periscope systems Beam folding Stereoscopic systems Interocular adjustment	276
& MEASURING INSTRUMENTS 5 TEXTBOOKS	REFLECTION			-	45° 60°	-	Reflecting	BK 7	19	Reflection through a precisely known angle	277
					F	alinc	I Cata	nole			

273 1

Г

SELECTING A PRISM - OVERVIEW OF THE EALING RANGE

					F		MATER-				OPTICAL BENCHES,
	PRODUCT RANGE	INVERSION	REVERSION	DEVIATION	DISPLACEMENT	REFLECTING/ DISPERSING	IAL/ USABLE WAVE- LENGTH RANGE	MAX APERTURE (mm)		PAGE NO.	MOUNTING BASES, TABLES
AMICI ROOF		•	•	90°	-	Reflecting	BK 7	21	Range-finding Terrestrial telescopes Viewing systems Medical instruments	277	MOUNTS MANUAL MICRO POSITIONERS
REVERSION		-	•	-	-	Reflecting	BK 7	21	Image reversal without deviation	277	OPTICAL MATERIALS, THEORY, CLEANING
CORNER CUBE	solid hollow	•	•	180°	-	Reflecting	ВК 7	blid 76.2 Ilow 125	Optical signalling, Laser interferometry, Distance & time measurements, Short pulse auto collimation, Laser anemometry	278	LENSES, MICROSCOPE COMPONENTS WINDOWS, MIRRORS, BEAMSPLITTERS, COATINGS
EQUILATERAL		-	-	•	-	Dispersing	BK 7 F 2 SF 10 Fused Silica	60	Prism spectrometers Pre-dispersers in high power systems	279	PRISMS, POLARZERS, APERTURES, TARGETS
DIRECT VISION		-	-	-	-	Dispersing	420- 2600nm	18	Spectral separation without deviation	279	FILTERS 3 LASERS & ACCESSORIES
BREWSTER/LITTROW		-	-	•	-	Dispersing	Fused Silica	25	Wavelength selection Prism spectrometers Laser cavities	280	LIGHT SOURCES, MONO- CHROMATORS, DETECTORS 4 OPTICAL TESTING & MEASURING

OPTICAL TESTING & MEASURING INSTRUMENTS

5

TEXTBOOKS

1

Prisms - reflecting

RIGHT ANGLE PRISMS

OPTICAL BENCHES, MOUNTING BASES, TABLES

COMPONENT MOUNTS

Manual Micro-Positioners

MOTORIZED MICRO-POSITIONERS

OPTICAL MATERIALS, THEORY.

CLEANING

LENSES, MICROSCOPE COMPONENTS

WINDOWS, MIRRORS, BEAMSPLITTERS, COATINGS

PRISMS, POLARIZERS, APERTURES, TARGETS

OPTICAL FILTERS

LASERS & ACCESSORIES

LIGHT SOURCES, MONO-CHROMATORS, DETECTORS

OPTICAL TESTING & MEASURING INSTRUMENTS

5

TEXTBOOKS

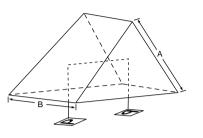
RIGHT ANGLE PRISMS

Right Angle Prisms

A Right Angle Prism is used to turn or deflect a beam through 90° or 180°. In either case this is achieved by total internal reflection and produces a very efficient broadband reflector.

90° DEFLECTION

For a 90° deflection the total internal reflection occurs at the hypotenuse face.



Provided that the prism surface is clean and the incident angle on the hypotenuse exceeds the critical angle, the prism will act as a very efficient broadband reflector for the visible and near infrared. The image is erect and reversed.

The main applications for this are for beam bending and for image erection in periscope and telescope systems. A Right Angle Prism is frequently used instead of a mirror since it is easier to mount and less affected by mechanical stress.

180° DEFLECTION

For a 180° deflection the Right Angle Prism is used with the hypotenuse as the entrance and exit face, with the total internal reflection occurring at the right angle faces.

The main application of this is to use it as a retroreflector provided that the plane of the incident beam includes the vertex.

Standard Right Angle Prisms

Ealing offers a wide range of sizes of Right Angle Prism in both BK7 and fused silica. For general visible and near IR work BK7 prisms are recommended. However fused silica should be selected for the UV or IR and also in thermally sensitive applications. In order to get total internal reflection the acceptance angle is fairly limited (see Page 271) and the beam should generally be collimated to avoid focal and chromatic changes. A reflective coating on the hypotenuse is sometimes advisable, particularly when a large acceptance angle is required or total cleanliness of the surface cannot be assured. Ealing offers a standard range of BK7 prisms already coated with aluminum and overcoated with black paint. Where surface losses from the other faces are a problem anti-reflection is recommended (see Page 266).

Glass Right Angle Prisms SPECIFICATIONS

Material: Wavelength range: Tolerances dimensions: angles: Surface finish quality: flatness: Coating: inconel and BK7 330-2100nm

±0.25mm ±5 arc mins

80/50 2λ Al overcoated with

black paint on hypotenuse

Fused Silica Right Angle Prisms SPECIFICATIONS

Material:	UV grade fused
	silica
Wavelength range:	200-see curve
	(Page 167)
Tolerances -	
dimensions:	±0.5mm
angles:	±10 arc mins
Surface finish -	
quality:	60/40
flatness:	λ
Uncoated	
(Cas many O/E fam ato	(analasa lanakinana)

(See page 265 for standard coatings)

Suitable mounts and tables for Prisms are shown on Pages 88 and 89.

Prisms - reflecting

275

1

OPTICAL

BENCHES, MOUNTING BASES, TABLES

COMPONENT

MOUNTS

MANUAL MICRO

POSITIONERS

MOTORIZED

MICRO-

POSITIONERS

2

OPTICAL

MATERIALS, THEORY.

CLEANING

LENSES, MICROSCOPE COMPONENTS

WINDOWS,

MIRRORS, BEAMSPLITTERS

COATINGS

OPTICAL

FILTERS

3

LASERS & ACCESSORIES

LIGHT SOURCES, MONO-CHROMATORS,

DETECTORS

4

OPTICAL TESTING & MEASURING

INSTRUMENTS

5

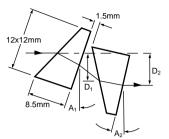
PRECISION LASER RIGHT ANGLE / ANAMORPHIC / WEDGE PRISMS

Precision Laser Right Angle Prisms

Ealing offers a range of Right Angle Prisms that have been manufactured with especially high precision and from carefully-selected materials.

These prisms are ideal for use in laser applications and where very high, reproducible precision is required. Prisms are available in BK7 and fused silica, both of which have been selected for low scatter. Surface finish and angular accuracy are maintained very tightly.

Glass Precision Laser Right Angle Prisms


SPECIFICATIONS

Material:	BK7
Wavelength range:	330-2100nm
Tolerances -	
dimensions:	+0/-0.25mm
angular deviation:	±3 mins
Surface finish -	
quality:	20/10
flatness:	λ/4
Uncoated	

Fused Silica Precision Laser Right Angle Prisms SPECIFICATIONS

Material:	UV grade fused silica
Wavelength range:	200-see curve (Page 167)
Tolerances -	
dimensions:	+0/-0.25mm
angular deviation:	±3 mins
Surface finish -	
quality:	10/5
flatness:	λ/10
Uncoated	

Anamorphic Prisms

Anamorphic Prism pairs are used mainly to correct the asymmetric beam shape of a Laser Diode - from elliptical to near circular shape. This is done by expanding (or contracting) the beam in one direction only while the other direction remains unchanged.

The aspect ratio of the elliptical beam varies according to the laser diode. Magnification is controlled by the angular position of the prisms relative to the incident beam (which has already been collimated). The table below lists the linear and angular dimensions of the prisms for various magnifications.

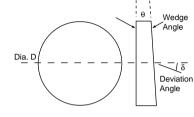
Magnification (X)	Prism A ₁ (Deg)	angles A ₂ (Deg)	Displac D ₁ (mm)	
2.0	21.2	6.0	5.1	5.3
3.0	30.4	0.1	6.4	6.4
4.0	35.2	-2.5	7.1	7.0
5.0	38.2	-3.9	7.6	7.4
6.0	40.4	-4.8	7.9	7.7

Ealing offers unmounted prisms in pairs. They are anti-reflection coated for use in the 650-850nm region. Ealing can design and manufacture mounts for anamorphic prisms for use either with Ealing Laser Diodes (Pages 341-353) or customerspecified diodes.

SPECIFICATIONS

Material: Wavelength range: Size: Tolerances dimensions: angles: Surface finish quality: flatness: Coating:

650-850nm 12x12x8.5mm ±0.1mm < 30 arc secs


SF11 glass

Wedge Prisms

Wedge Prism

Wedge Prisms are mainly used with laser beams, either for elimination of reflections from the second surface or for beam steering.

The angle of deviation δ of a collimated laser beam through a Wedge Prism with a wedge angle θ and refractive index n is given by

$\delta = (n-1) \theta$

Wedge Prisms are often measured by their 'power' (Δ) in diopters, where 1 diopter is a deflection of 1cm at a distance of 1m from the prism. Using two prisms of the same power in series and in close contact provides a very useful beam steerer. This is achieved by rotating the two prisms independently. A ray normal to the prisms can then be steered in any direction within a narrow cone around the undeviated path. Ealing offers two Wedge Prisms of different powers. They are supplied uncoated - see Pages 266 and 267 if AR coatings are required.

SPECIFICATIONS

SI LUII IOATIONS	
Material:	BK7 grade A fine annealed
Wavelength range:	330-2100nm
Tolerances -	
diameter:	+0/-0.10mm
angles:	±30 secs
Surface finish -	
quality:	60/40
flatness:	λ/4
Uncoated	

TEXTBOOKS

Prisms - reflecting

PENTA / DOVE / RHOMBOID PRISMS

OPTICAL BENCHES, MOUNTING BASES. TABLES

1

COMPONENT MOUNTS

MANUAL MICRO POSITIONERS

MOTORIZED MICRO-POSITIONERS 2

OPTICAL MATERIALS, THEORY. CLEANING

LENSES, MICROSCOPE COMPONENTS

WINDOWS, MIRRORS EAMSPLITTERS, COATINGS

OPTICAL FILTERS

3

LASERS & ACCESSORIES

LIGHT SOURCES

MONO CHROMATORS, DETECTORS 4

OPTICAL TESTING & MEASURING INSTRUMENTS

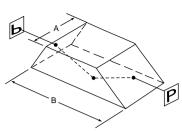
5

TEXTBOOKS

Penta Prisms

Penta Prisms deviate an incident beam through 90° without inverting or reversing it. They also show constant deviation i.e. the beam is deviated through 90° irrespective of the orientation of the prism. The accuracy of the 90° deviation is therefore only dependent on the manufacturing tolerances of the prism. These prisms are extremely useful when precise orientation of the prism is not possible and also where the path length through an instrument needs to be shortened. Typical applications include range finding, surveying, alignment and cinephotography. Ealing offers a range of sizes and a choice of two different accuracies. The reflecting faces are coated and the entrance and exit faces have an anti-reflection layer.

SPECIFICATIONS


SI LOII IOATIONS	
Material:	BK7
Wavelength range:	330-2100nm
Beam deviation -	
standard:	90°±5′
precision:	90°±3″
Dimensional tolerances	-
standard:	+0/-0.1mm
precision:	$A = \pm 0.3 mm$,
	B = +0/-0.13r
Surface quality -	
standard:	60/40
precision:	80/50
Surface flatness -	
standard:	λ/2
precision:	1-4 λ , to DIN s
	58158
Reflective coating:	Al overcoated
	inconel & blac

AR coating:

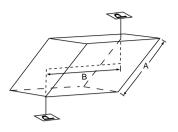
n. 3mm

> V spec ed lack paint on reflecting surfaces only Broadband AR coating

Dove Prisms

Dove Prisms are a truncated form of right angle prism which use total internal reflection to produce an image which emerges without deviation but is inverted. The main application for these prisms is as image rotators. Rotating the prism about an optical axis results in the image rotating at double the angular velocity of the prism. It is very important that the incident beam is collimated. In addition the large reflecting face must be kept very clean and the prism should not be rested on this face.

Ealing Dove Prisms are broadband AR coated on the entrance and exit faces for maximum transmission.


BK7

SPECIFICATIONS

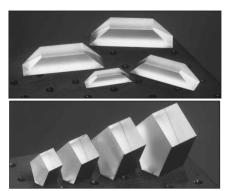
Material: Wavelength range: Tolerances dimensions: angles: Surface finish quality: flatness: Coating:

330-2100nm ±0.2mm ±5 arc mins 80/50 λ Broadband AR coating

Rhomboid Prisms

Rhomboid Prisms are used primarily for controlling and redirecting the optical path without affecting the image orientation. They are particularly useful for displacing an optical center line (e.g. in a periscope system). Other applications include beam folding (e.g. adjustment of the interocular distance in binoculars), stereoscopic systems and systems which include articulation. Ealing offers a standard range of Rhomboid Prisms. The inclined reflecting faces are manufactured to the high degree of accuracy required for most applications. Entrance and exit faces are AR coated.

SPECIFICATIONS


Material: Wavelength range: Tolerances dimensions: angles: Surface finish flatness: Coating

RK7 330-2100nm

±0.15mm

3 arc mins

2λ Broadband AR coating

Dove Prisms (top) and Penta Prisms

Ealing Catalog

See Pages 88 and 89 for the standard range of Ealing Prism Mounts and Tables.

Prisms - reflecting

REFLECTION / AMICI ROOF / REVERSION PRISMS

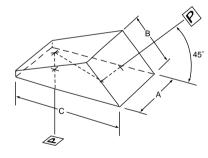
45°, 60° Reflection Prisms

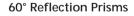
Reflection Prisms are a convenient and reliable means of deflecting a beam through a precisely-known angle.

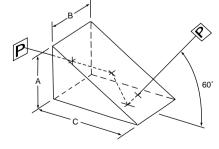
Ealing offers prisms for 45° and 60° deviation both uncoated and coated with broadband reflective and AR coatings.

SPECIFICATIONS

Material: Wavelength range: Tolerances dimensions: angles: Surface finish quality: flatness:

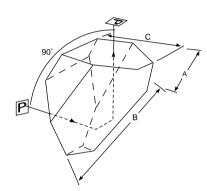

Coating:


BK7 310-2100nm


+0.2mm±5 arc mins 60/40 1-4 λ , to DIN spec 58158 Al and SiO₂ on larger reflecting

face Broadband AR on entrance and exit faces


45° Reflection Prisms

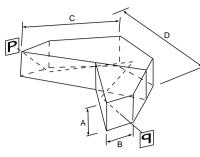


Amici Roof Prisms

Amici Roof Prisms

Amici Roof Prisms are right angle prisms where the hypotenuse is replaced by a totally internally reflecting roof. The image is both inverted and reversed and is also deflected through 90°. Common applications for Roof Prisms include rangefinders, terrestrial telescopes, viewing systems and medical instruments.

Cleanliness and quality of the roof faces are very important. Ealing offers Roof Prisms with the roof angle tightly controlled for accurate applications. For wide field applications it may be advisable to coat the roof faces with a fully reflective coating. (See Pages 267-268).


SPECIFICATIONS

- Material: Wavelength range: Roof angle standard: precision: Uncoated
- 310-2100nm 1 arc min

6 arc secs

BK7

Reversion Prism

This prism is an Abbe-Konig type of Reversion Prism made up of two elements cemented together. It is sometimes known as a K prism. Used as above, the image remains the same, i.e. erect and undeviated except for a complete reversal. This prism may be used in converging and diverging beams as well as those that are collimated.

SPECIFICATIONS

P.

Material:	BK7
Aperture:	21mm
Dimensional	
tolerances -	
A:	22mm ±
B:	21mm
C:	40mm ±
D:	69.2mm
Max deviation error:	10 arc m
Coating:	Broadbar
	coated

* Note also that this prism may be

invert rather than revert the image.

used in the following configuration to

0.13mm 0.3mm $\pm 0.3 mm$ nins nd AR

OPTICAL FILTERS

3

LASERS & ACCESSORIES

LIGHT SOURCES MONO-CHROMATORS DETECTORS

4

OPTICAL TESTING & MEASURING INSTRUMENTS

Ь

5

TEXTBOOKS

Ealing Catalog

1

277

OPTICAL BENCHES, MOUNTING BASES. TABLES

COMPONENT MOUNTS

MANUAL MICRO POSITIONERS

MOTORIZED MICRO-POSITIONERS

2

OPTICAL MATERIALS, THEORY CLEANING

LENSES MICROSCOPE COMPONENTS

WINDOWS,

MIRRORS

BEAMSPLITTERS

COATINGS

1

Prisms - reflecting

CORNER CUBE PRISMS

These solid glass retroreflective mirrors are of tetrahedral

construction producing three total

such that an incident ray is reflected

orientation of the prism, the accuracy

internal reflections. This design is

back on itself, regardless of the

of the reflection being dependent

only on manufacturing tolerances.

The image is inverted and reversed. Common applications include optical

signalling, laser interferometry and a

Ealing offers a range of Solid Corner

Cubes with different accuracies.

They are available with a circular

hexagonal faces for combining

aperture for individual use or with

together to form a larger reflecting

It is often advisable to anti-reflection

coat Corner Cubes to avoid ghost reflections from the front face, although this tends to restrict the

usable spectral range. (For coatings

see Pages 262-268).

variety of distance and time

measurements.

surface.

Solid Corner Cubes

COMPONENT

MOUNTS

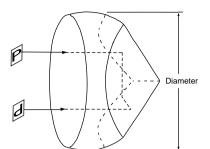
MANUAL MICRO POSITIONERS

MOTORIZED MICRO-POSITIONERS

OPTICAL MATERIALS, THEORY. CLEANING

LENSES, MICROSCOPE COMPONENTS

WINDOWS, MIRRORS COATINGS


ACCESSORIES

LIGHT SOURCES, MONO-

& MEASURING INSTRUMENTS

TEXTBOOKS

Circular Corner Cubes

SPECIFICATIONS

Material: Wavelength range: Beam deviation: Dimensional tolerances: Surface finish quality: flatness: Uncoated

BK7 310-2100nm 3 arc secs +0/-0.1mm

Hexagonal Corner Cubes Ì в

SPECIFICATIONS

Material: Wavelength range: Beam deviation standard: precision: Dimensional tolerances: Surface finish quality: flatness:

Uncoated

BK7 310-2100nm

1 arc min 20 arc secs

±0.3mm

80/50 1-4 λ , to DIN spec 58158

Ealing Catalog

60/40 λ/8

2

BEAMSPLITTERS,

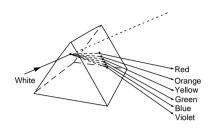
OPTICAL FILTERS

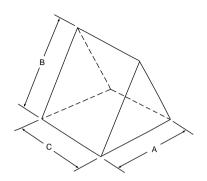
3

LASERS &

CHROMATORS, DETECTORS

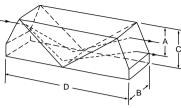
4


OPTICAL TESTING


Prisms - dispersing

EQUILATERAL / DIRECT VISION DISPERSING PRISMS

Equilateral Prisms


Equilateral Prisms are used routinely as dispersing elements where spectral separation is required. They provide superior brightness (lower stray light) than diffraction gratings, have greater power handling capabilities and avoid possible confusion when trying to interpret overlapping spectral orders. However, it must be remembered that dispersion is nonlinear with wavelength and that surface reflection losses may affect throughput. Ealing offers Equilateral Prisms in four materials designed to suit a wide variety of dispersion, wavelength, surface reflection and cost requirements. In general, a higher refractive index material produces greater angular separation. However it should be noted that high index flint glasses are more fragile than BK7 and can be subject to staining. They also exhibit higher reflection losses, which may be important for s-polarized or unpolarized beams but can be improved by AR coating the entrance and exit faces (see Pages 266 and 267).

SPECIFICATIONS

Material and waveleng	th range:
BK7	330-2100nm
F2	350-2200nm
SF10	400-2400nm
fused silica	200-see curve
	(Page 167)
Refractive index:	-
BK7	n_=1.517
	$n_{r} - n_{c} = 0.0081$
F2	n_=1.620
	$n_{r} - n_{c} = 0.0170$
SF10	n_=1.728
	$n_{F} - n_{c} = 0.0256$
fused silica	n _d =1.458
	$n_{F} - n_{C} = 0.0068$
Angular dispersion:	
BK7	0°42′37″
F2	1°40′45″
SF10	2°58′25″
fused silica	0°34′01″
Tolerances -	
dimensions:	±0.5mm
angles:	±5 arc mins
Surface finish -	
quality:	80/50
flatness:	2λ per 25.4mm
Uncoated	
(see Page 265 for stand	dard coatings)
-	0

Direct Vision Prisms

These Amici-type Direct Vision Prisms are constructed from three components cemented together. The outer elements are crown glass and the center one is made from flint glass. They are used as dispersing elements where spectral separation is required without any additional deviation of the beam.

SPECIFICATIONS

Angular dispersion:	4° 35′
Wavelength range:	420–2600nm
Tolerances -	
dimensions	
A,B:	±0.2mm
C:	±0.13mm
D:	±0.5mm
Uncoated	

Standard Prism Mounts are shown on

Pages 88 and 89. Please inquire for

special mounting requirements.

279

1

COMPONENT MOUNTS

MANUAL MICRO POSITIONERS

MOTORIZED MICRO-POSITIONERS 2

> OPTICAL MATERIALS, THEORY CLEANING

LENSES, MICROSCOPE COMPONENTS

WINDOWS, MIRRORS BEAMSPLITTERS COATINGS

OPTICAL FILTERS

3

LASERS & ACCESSORIES

LIGHT SOURCES MONO-CHROMATORS DETECTORS

4

OPTICAL TESTING & MEASURING INSTRUMENTS

5

TEXTBOOKS

1

Prisms - dispersing

BREWSTER / LITTROW PRISMS

OPTICAL BENCHES, MOUNTING BASES, TABLES

COMPONENT MOUNTS

MANUAL MICRO-POSITIONERS

MOTORIZED MICRO-POSITIONERS

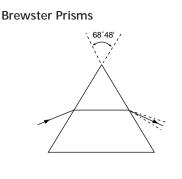
optical Materials, Theory, Cleaning

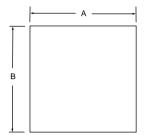
LENSES, MICROSCOPE COMPONENTS

PRISMS, POLARIZERS, APERTURES, TARGETS

OPTICAL FILTERS

LASERS & ACCESSORIES


LIGHT SOURCES, MONO-CHROMATORS, DETECTORS


4

OPTICAL TESTING & MEASURING INSTRUMENTS

TEXTBOOKS

Littrow Prisms

B

31.51

Α

Brewster Prisms are designed to have an apex angle such that a p-polarized ray incident at Brewster's angle will pass through the prism parallel to the base at minimum deviation, and exit also at Brewster's angle. In this case surface reflection losses are negligible and Brewster Prisms are often used in situations where surface reflection losses cannot be tolerated.

Brewster Prisms are also frequently used to select a single wavelength from a multi-wavelength laser. Tuning is accomplished by tilting the prism.

These prisms have very low surface reflection losses (>10 $^{\circ}$) over the range 350-650nm and are usable from 350-2500nm.

SPECIFICATIONS

Material:	UV grade fused
	silica
Refractive index:	n _d =1.458
	$n_{r} - n_{c} = 0.0068$
Angular dispersion:	0°47′46″
Wavelength range:	350-2500nm
for low reflections:	350-650nm
Tolerances -	
dimensions:	±0.5mm
apex angle:	±5 arc mins
Surface -	
finish:	scatter free
flatness:	λ/20
Uncoated	

Littrow Prisms are of the same design as Brewster prisms but cut in half vertically from the apex to the base.

They are normally used in a laser cavity or prism spectrometer to select a particular wavelength. In general, the beam is incident on the hypotenuse and is reflected back from the rear surface. It exits from the hypotenuse dispersed into its constituent wavelength components. Tuning is accomplished by tilting.

Ealing Littrow Prisms are supplied uncoated but should be coated for normal operation with a minimum reflectance multilayer dielectric coating (see Pages 266-267).

SPECIFICATIONS

Material:	UV grade fused
	silica
Refractive index:	n _d =1.458
	$n_{r} - n_{c} = 0.0068$
Angular dispersion:	0° 13′40″
Wavelength range:	350-2500nm
Tolerances -	
dimensions:	±0.5mm
apex angle:	±5 arc mins
Surface -	
finish:	scatter free
flatness:	λ/20
Uncoated	

