

The convention used here is:-

s +ve if direction PO is to the right s' +ve if direction P'O' is to the right x +ve if direction FO is to the right x' +ve if direction F'O' is to the right m -ve if image is inverted radii +ve if center lies to the right of surface The focal length f of a thick lens may be calculated using the following formula

$$\frac{1}{f} = (n-1) \left(\frac{1}{r_1} - \frac{1}{r_2} \right) + \frac{(n-1)^2 CT}{nr_1 r_2}$$

The principal plane positions may then be found from

$$VP = \frac{-CT (n-1)f}{nr_2} \text{ or } V'P' = \frac{-CT (n-1)f}{nr_1}$$

The magnitude of sag drop on the surface is given by

Sag =
$$\{ IRI - (R^2 - D^2/4)^{fi} \}$$

where R is the radius of the curvature of that surface and D the diameter of the component.

Many expressions in optics are simplified by considering the power K, given by

$$K = 1/f$$

A common unit of lens power is the diopter which is the power of a lens with a focal length of 1 meter.

In many cases, the center thickness CT produces a second order change to the overall focal length. For a change in wavelength, the focal length $f_{\lambda}^{\ \ }$ at a new wavelength $\lambda^{\ \ }$ can be calculated from the initial focal length f_{λ} at wavelength λ by the following equation

$$f_{\lambda}' = f_{\lambda}(\frac{n_{\lambda}-1}{n'-1})$$

Example 1

To determine the magnification and image position of a BK7 Plano-Convex Lens for an object located 200mm from the curved face

The first principal point P for this lens is located at the curved surface as VP = 0.

Taking into account the sign convention s = -200 mm. The nominal focal length f = 40mm.

Using the equations on Theory Pg 1 and the information given

$$s' = fs/(f+s)$$

= 40.(-200)/(40+(-200))
= 50mm (measured from P')

Given V'P' = -1.6mm the paraxial image is formed 48.4 mm from the plano face of the lens.

Magnification
$$m = s'/s$$

= $50/(-200)$
= -0.25 (the image is inverted)

Example 2

Solving the same problem using the Newton conjugate equations

$$x = s+f = -200+40 = -160 \text{ mm}$$

 $x' = -f^2/x = -(40)^2/(-160) = 10 \text{ mm}$
 $m = f/x = 40/(-160) = -0.25$
 $s' = x'+f = 10+40 = 50 \text{ mm}$